OptimIA

Temperature

Dr. Roberto Lopez

Professor of Horticulture
Michigan State University

1

Environmental Factors to Consider

- Temperature
- Light
- Humidity
- CO_{2} concentration
- Air current speed

Temperature Effects on Plants

- Physiological processes are affected by plant temperature, which is determined by transfer of heat between plant tissues and the surrounding environment
- Controls rate of cell division, and thus root and shoot development
- Indirectly influences growth characteristics (branching, biomass accumulation, flower number, etc., which are primarily a function of accumulated light over time)

Temperature Effects on Plants

- Monitoring and managing air temperature is essential
- Relatively constant for vertical production indoors (leading to increased control of physiological activity)
- Can be expensive and challenging to maintain cooler temperatures due to the influence of lighting
- Less control in greenhouse

5

If MICHIGAN STATE UNIVERSITY

Temperature Effects on Plants

Energy balance

- Energy received by plants includes:
- Absorbed radiant energy from lamps
- Absorbed infrared radiation from surroundings
- Energy leaving plants includes:
- Energy lost through emitting infrared radiation (long-wave radiation)
- Convection and conduction
- Heat loss through evaporation

Temperature Effects on Plants

- Plants regulate their temperature through:
- Radiation
- Transpiration
- Convection
- Leaf orientation, shape and hairs
- Heat shock proteins

Temperature Effects on Plants

Radiation

- Leaves have low absorption in the near infrared range (700 - 1,500 nm), most reflected or transmitted
- Leaves have high absorption in the far infrared range ($1,500-30,000 \mathrm{~nm}$), contributes significantly to thermal energy load
- Primary sources of radiant energy in CEA:
- Lamps
- Reflectors
- Sunlight

Infrared Radiation

Plant temperature higher (red areas) than the substrate temperature (blue areas)

Temperature Effects on Plants

Radiation

- HPS lamps have a surface temperature of over $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ and emit large quantities of far-infrared radiation
- Results in increased leaf temperature regardless of air temperature
- As comparison, LEDs have surface temperature of $\sim 86^{\circ} \mathrm{F}\left(\sim 30^{\circ} \mathrm{C}\right)$

Temperature Effects on Plants

Heat conduction and convection Heat is transferred via conduction from leaf cells to air molecules in contact with the leaf

- Limited without convective movement due to low thermal conductivity of air
- Can also occur between plant parts
 and substrate (water in hydroponic systems)

Temperature Effects on Plants

Heat is transferred via convection when air moves
across the plant. Two types of convection:

Convection

- Free (natural) - heat transferred from leaves causes air to warm, expand, and decrease in density.
- Buoyant warm air moves upward away from plant
- Forced - caused by wind or fans.
- Speeds of more than $0.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ are required for gas exchange, so $0.5-1.0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ is common target

Temperature

- Daytime temperature
- photosynthesis
- transpiration rate
- Nighttime temperature
- dark respiration
- Average daily temperature (ADT)

- rate of development

Plant Development

Apical

- Development refers to changes in the meristematic tissues (shoot tips and leaf axils) where leaves and flowers initiate and develop.
- The rate of development is primarily determined by the average temperature over time.
- Can be used to increase or decrease how a plant develops towards marketability

Average daily temperature

- Base (or Minimum) Temperature (T_{b})
- The temperature above which development proceeds
- Optimal Temperature ($T_{\text {opt }}$)
- The temperature at which plant development is maximal
- Maximum Temperature ($T_{\max }$)
- The temperature above which development ceases

Plant Development

As long as temperatures are within the linear range, biomass and developmental stage can be well correlated with the average daily temperature

17

MICHIGAN STATE UNIVERSITY

Plant Development

Plant Development

The optimal temperatures for flower and leaf development can be different for the same plant

f MICHIGAN STATE UNIVERSITY

Strawberry 'Albion'

Day and Night Temperałure $\left({ }^{\circ} \mathrm{C}\right)$

$13 / 7$	$18 / 12$	$21 / 13$	$23 / 17$	$28 / 22$	$33 / 27$

Photo taken 7 weeks after plants were placed under treatments
21

23

Fresh mass gain per day

25

F MICHIGAN STATE UNIVERSITY
Fresh mass gain per day

Fresh mass gain per day

Base temperature

- Cold-sensitive greenhouse crops: base temperature of $46^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right)$ or higher
- Lettuce 'Rouxaï RZ' $\mathrm{T}_{\mathrm{b}} 47.8^{\circ} \mathrm{F}$
- Kale 'Red Russian' $\mathrm{T}_{\mathrm{b}} 46.4^{\circ} \mathrm{F}$
- Tomato $\mathrm{T}_{\mathrm{b}} 46.4^{\circ} \mathrm{F}$
- Sweet basil $\mathrm{T}_{\mathrm{b}} 52^{\circ} \mathrm{F}$
- Cold-temperate greenhouse crops: base temperature between 40 and 45 ${ }^{\circ} \mathrm{F}\left(5\right.$ to $7^{\circ} \mathrm{C}$)
- Lettuce 'Rex' $\mathrm{T}_{\mathrm{b}} 44.8^{\circ} \mathrm{F}$
- Arugula 'Astro' $\mathrm{T}_{\mathrm{b}} 43.9^{\circ} \mathrm{F}$

Cold-tolerant greenhouse crops: base temperature of $39^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$ or lower

Temperature Versus Light

- Can be difficult to separate effects of temperature \& light
- High light \rightarrow higher air, substrate and plant temperatures

Temperature and Daily Light Integral (DLI) Interact to Control Growth and Development

Temperature:

- Time to unfold a leaf
- Time to flower
- Leaf size
- Flower size
- Dry and fresh weight
- Flower and fruit color

Light:

- Photosynthesis (growth)
- Plant temperature
- Lateral branching
- Stem diameter
- The leaf (node) number at which plants are induced to flower
- Flower number
- Dry and fresh weight
- Leaf thickness and size
- Flower size
- Yield (cut flowers, fruits, and vegetables)

31
f MICHIGAN STATE UNIVERSITY

Time ło Flower from Transplanł

Important Temperatures to Consider:

- Air
- Water/Media
- Plant

Measuring Air Temperature

- Most common temperature measured
- Easiest to measure
- The best single indicator
- Not always the most important

An aspirated thermocouple (thermometer) measures air temperature.

Measuring Air Temperature

- Sensor must be shaded
- Sensor must be aspirated
- Air moved across
- Sensor should be at appropriate location,
 typically at plant height

The Important Temperature is the Temperature of the Plant Component in Question

Infrared Radiometers (IR sensors)

- When selecting an IR thermometer, consider the following:
- Accuracy
- Ease of use
- Price

- Temperature range
- Field-of-view
- Target dimensions
- Calibration
- "Good" sensors start at \$250 and can be $\$ 5000$ or higher

Measuring Plant Temperature

- Thermocouples or thermistor connected to dataloggers (media, leaf, shoot-tip)
- Soil temperature probe

- Infra-red (IR) sensor

Thermal Imaging Cameras

39

Measuring Substrate Temperature

Contributions to Plant Temperature

- Air temperature
- Light intensity
- Glazing (or sky) temperature
- Vapor pressure deficit (VPD) [humidity]
- Wind
- Water and media temperature

Summary

- Temperature is an important tool used in CEA to manipulate the growth and development of crops
- It has a great impact on plant quality due to its effects on crop timing, leaf and flower size

Thank you!

This lecture series is supported by Specialty Crop Research Initiative [grant no. 2019-51181-30017] from the USDA National Institute of Food and Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S.

Department of Agriculture.

USDA National Institute of Food and Agriculture
U.S. DEPARTMENT OF AGRICULTURE

